Time-Contrastive Learning Based Unsupervised DNN Feature Extraction for Speaker Verification

نویسندگان

  • Achintya Kr. Sarkar
  • Zheng-Hua Tan
چکیده

In this paper, we present a time-contrastive learning (TCL) based unsupervised bottleneck (BN) feature extraction method for speech signals with an application to speaker verification. The method exploits the temporal structure of a speech signal and more specifically, it trains deep neural networks (DNNs) to discriminate temporal events obtained by uniformly segmenting the signal without using any label information, in contrast to conventional DNN based BN feature extraction methods that train DNNs using labeled data to discriminate speakers or passphrases or phones or a combination of them. We consider different strategies for TCL and its combination with transfer learning. Experimental results on the RSR2015 database show that the TCL method is superior to the conventional speaker and pass-phrase discriminant BN feature and Mel-frequency cepstral coefficients (MFCCs) feature for text-dependent speaker verification. The unsupervised TCL method further has the advantage of being able to leverage the huge amount of unlabeled data that are often available in real life.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Deep Neural Networks Based Speaker Verification Using Unlabeled Data

Recently, deep neural networks (DNNs) trained to predict senones have been incorporated into the conventional i-vector based speaker verification systems to provide soft frame alignments and show promising results. However, the data mismatch problem may degrade the performance since the DNN requires transcribed data (out-domain data) while the data sets (indomain data) used for i-vector trainin...

متن کامل

Variable print quality

In the literature, much research work has been done in the area of speaker verification. The developments include: different types of speaker verification techniques, methods for feature extraction, measures for telephone channel compensation, system robustness etc. In contrast, the problem of acoustic feature selection for speaker verification has been relatively neglected. Hence our aim is to...

متن کامل

Investigation of bottleneck features and multilingual deep neural networks for speaker verification

Recently, the integration of deep neural networks (DNNs) with i-vector systems is proved to be effective for speaker verification. This method uses the DNN with senone outputs to produce frame alignments for sufficient statistics extraction. However, two types of data mismatch may degrade the performance of the DNN-based speaker verification systems. First, the DNN requires transcribed training...

متن کامل

Deep Neural Network based Text-Dependent Speaker Recognition: Preliminary Results

Recently there has significant research interest in using neural networks as feature extractors for text-dependent speaker verification. These types of systems have been shown to perform very well when a large amount of speaker data is available for training. In this work we are interested in testing the efficacy of these methods when only a small amount of training data is available. Google re...

متن کامل

Deep feature for text-dependent speaker verification

Recently deep learning has been successfully used in speech recognition, however it has not been carefully explored and widely accepted for speaker verification. To incorporate deep learning into speaker verification, this paper proposes novel approaches of extracting and using features from deep learning models for text-dependent speaker verification. In contrast to the traditional short-term ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.02373  شماره 

صفحات  -

تاریخ انتشار 2017